




2.1 Task

More specifically, the problem assumes COMET is

given a training knowledge base of natural lan-

guage tuples in {s, r, o} format, where s is the

phrase subject of the tuple, r is the relation of the

tuple, and o is the phrase object of the tuple. For

example, a ConceptNet tuple relating to “taking

a nap" would be: (s=“take a nap", r=Causes,

o=“have energy"). The task is to generate o given

s and r as inputs.

Notation We define Xs = {xs0, ..., xs|s|} as the

tokens that make up the subject of the relation,

Xr = {xr0, ..., xr|r|} as the tokens that make up

the relation of the tuple, and Xo = {xo0, ..., xo|o|}
as the tokens that make up the object of the tuple.

The embedding for any word x is denoted as e.

2.2 Transformer Language Model

While COMET is agnostic to the language model

with which it is initialized, in this work, we use

the transformer language model architecture in-

troduced in Radford et al. (2018) (GPT), which

uses multiple transformer blocks of multi-headed

scaled dot product attention and fully connected

layers to encode input text (Vaswani et al., 2017).

Figure 2 depicts different components of the GPT

architecture and we define each component in

more depth below.

Transformer Block As shown in Figure 2(b),

each transformer layer l contains an architecturally

identical transformer block (though with unique

trainable parameters) that applies the following

transformations to the input to the block:

g̃l = MULTIATTN(hl−1) (1)

gl = LAYERNORM(g̃l + hl−1) (2)

h̃l = FFN(gl) (3)

hl = LAYERNORM(h̃l + gl) (4)

where MULTIATTN is a multi-headed self-

attention mechanism (defined below), FFN is

a two-layer feed-forward network, and LAYER-

NORM represents a layer normalization (Ba et al.,

2016) operation that is applied to the output of

the self-attention and the feedforward network.

Note that the inputs to the LAYERNORM opera-

tions contain a residual connection that sums the

output of and input to the previous operation.

Multi-headed Attention The multi-headed at-

tention module of each transformer block, shown

in Figure 2(a), is identical to the one originally de-

fined by Vaswani et al. (2017). The attention func-

tion receives three inputs, a query Q, key K, and

value V . The attention is made of multiple heads

that each compute a unique scaled dot product at-

tention distribution over V using Q and K:

ATTENTION(Q,K, V ) = softmax

(

QKT

√
dk

)

V

(5)

where dk is the dimensionality of the input vectors

representing the query, key and value. For each

of the heads, Q, K, and V are uniquely projected

prior to the attention being computed:

Hi = ATTENTION(QW
Q
i ,KWK

i , V W V
i ) (6)

where Hi is the output of a single attention head

and W
Q
i , WK

i , and W V
i are head-specific projec-

tions for Q, K, and V , respectively. The outputs

of the attention heads Hi are then concatenated:

MULTIH(Q, K, V) = [H1; ...;Hb]W
O (7)

where WO is an output projection of the concate-

nated outputs of the attention heads. As shown in

Figure 2(c), we follow Radford et al. (2018) and

use the output of the previous layer’s transformer

block as the query input for the multi-headed at-

tention of the next block. The keys and values are

outputs of the previous layer’s block for all pre-

ceding time steps:

MULTIATTN(hl−1
t ) = MULTIH(hl−1

t ,hl−1
t ,hl−1

t )
(8)

where h
l−1
t = {hl−1}<t is the set of previous

layer transformer block outputs for time steps pre-

ceding t.

Input Encoder As input to the model, we repre-

sent a knowledge tuple {s, r, o} as a concatenated

sequence of the words of each item of the tuple:

X = {Xs, Xr, Xo} (9)

Since the transformer (a self-attention model) has

no concept of ordering of tokens, a position em-

bedding pt is initialized for each absolute position

in the sequence (Vaswani et al., 2017). For any

input word xt ∈ X, our encoding of the input is





Model PPL5 BLEU-2 N/T sro
6 N/T o N/U o

9ENC9DEC (Sap et al., 2019) - 10.01 100.00 8.61 40.77
NearestNeighbor (Sap et al., 2019) - 6.61 - - -
Event2(IN)VOLUN (Sap et al., 2019) - 9.67 100.00 9.52 45.06
Event2PERSONX/Y (Sap et al., 2019) - 9.24 100.00 8.22 41.66
Event2PRE/POST (Sap et al., 2019) - 9.93 100.00 7.38 41.99

COMET (- pretrain) 15.42 13.88 100.00 7.25 45.71
COMET 11.14 15.10 100.00 9.71 51.20

Table 1: Automatic evaluations of quality and novelty for generations of ATOMIC commonsense. No novelty

scores are reported for the NearestNeighbor baseline because all retrieved sequences are in the training set.

Model oEffect oReact oWant xAttr xEffect xIntent xNeed xReact xWant Avg

9Enc9Dec (Sap et al., 2019) 22.92 32.92 35.50 52.20 47.52 51.70 48.74 63.57 51.56 45.32

Event2(In)voluntary (Sap et al., 2019) 26.46 36.04 34.70 52.58 46.76 61.32 49.82 71.22 52.44 47.93

Event2PersonX/Y (Sap et al., 2019) 24.72 33.80 35.08 52.98 48.86 53.93 54.05 66.42 54.04 46.41

Event2Pre/Post (Sap et al., 2019) 26.26 34.48 35.78 52.20 46.78 57.77 47.94 72.22 47.94 46.76

COMET (- pretrain) 25.90 35.40 40.76 48.04 47.20 58.88 59.16 64.52 65.66 49.50

COMET 29.02 37.68 44.48 57.48 55.50 68.32 64.24 76.18 75.16 56.45

Table 2: Human score of generations of ATOMIC commonsense. We present comparisons to the baselines from

Sap et al. (2019). Underlined results are those where COMET is not significantly better at p < 0.05

objects as a function of the set of unique objects

produced for all test set events (% N/U o).

Finally, we perform a human evaluation using

workers from Amazon Mechanical Turk (AMT).

Workers are asked to identify whether a model

generation of ATOMIC commonsense adequately

completes a plausible tuple of phrase subject, rela-

tion, and phrase object. Following the setup of Sap

et al. (2019), we evaluate 100 randomly selected

events from the test set. For each event and rela-

tion type, 10 candidates are generated using beam

search and the full beam is evaluated by five differ-

ent workers. Overall, n=5000 ratings are produced

per relation (100 events × 5 workers × 10 candi-

dates). The reported Avg in Table 2 is an aver-

age of these scores, yielding n=45000 total ratings

for each model. We use Pitman’s test (Noreen,

1989) with 100k permutations to test for statis-

tical significance. Because 50 different hypothe-

ses are tested (9 relations + the total), the Holm-

Bonferroni method (Holm, 1979) is used to correct

significance thresholds. Example events from the

development set and their generated phrase objects

are available in Table 5.

Baselines We report the performance of our

method against the models trained in Sap et al.

(2019) that use LSTM sequence-to-sequence mod-

els (Sutskever et al., 2014) to encode the input sub-

ject and relation and produce an output object.

Ablations To evaluate how pre-training on a

large corpus helps the model learn to produce

knowledge, we train a version of COMET that is

not initialized with pre-trained weights (COMET (-

pretrain)). We also evaluate the data efficiency of

our method by training models on different pro-

portions of the training data. Finally, because

the ultimate goal of our method is to be able

to perform high-quality, diverse knowledge base

construction, we explore how various decoding

schemes affect the quality of candidate knowledge

tuples. We present the effect of the following gen-

eration strategies: argmax greedy decoding, beam

search with beam sizes, b=2, 5, 10, and top-k sam-

pling with k = 5, 10. For each decoding method,

we conduct the human evaluation on the number

of final candidates produced by each method.

4.2 Results

Overall performance The BLEU-2 results in

Table 1 indicate that COMET exceeds the perfor-

mance of all baselines, achieving a 51% relative

improvement over the top performing model of

Sap et al. (2019). More interesting, however, is the

result of the human evaluation, where COMET re-

ported a statistically significant relative Avg per-

formance increase of 18% over the top baseline,

5Sap et al. (2019)’s models were trained with a different
vocabulary so a direct perplexity comparison is not possible.

6All test set s do not appear in the training set so all full
tuples must be novel.



COMET Decoding method oEffect oReact oWant xAttr xEffect xIntent xNeed xReact xWant Avg

Top-5 random sampling (n=2500 per relation) 34.60 44.04 35.56 64.56 55.68 58.84 46.68 80.96 58.52 53.27

Top-10 random sampling (n=5000 per relation) 25.20 37.42 27.34 49.20 47.34 47.06 38.24 72.60 48.10 43.61

Beam search - 2 beams (n=1000 per relation) 43.70 54.20 47.60 84.00 51.10 73.80 50.70 85.80 78.70 63.29

Beam search - 5 beams (n=2500 per relation) 37.12 45.36 42.04 63.64 61.76 63.60 57.60 78.64 68.40 57.57

Beam search - 10 beams (n=5000 per relation) 29.02 37.68 44.48 57.48 55.50 68.32 64.24 76.18 75.16 56.45

Greedy decoding (n=500 per relation) 61.20 69.80 80.00 77.00 53.00 89.60 85.60 92.20 89.40 77.53

Human validation of gold ATOMIC 84.62 86.13 83.12 78.44 83.92 91.37 81.98 95.18 90.90 86.18

Table 3: Human evaluation testing effect of different decoding schemes on candidate tuple quality. The number of

ratings made per relation for each decoding method is provided in the first column.

% train data PPL BLEU-2 N/T o N/U o

1% train 23.81 5.08 7.24 49.36
10% train 13.74 12.72 9.54 58.34
50% train 11.82 13.97 9.32 50.37

FULL (- pretrain) 15.18 13.22 7.14 44.55

FULL train 11.13 14.34 9.51 50.05

Table 4: Effect of amount of training data on automatic

evaluation of commonsense generations

Event2IN(VOLUN). This performance increase is

consistent, as well, with an improvement being

observed across every relation type. In addition

to the quality improvements, Table 1 shows that

COMET produces more novel tuple objects than

the baselines, as well.

Learning knowledge from language Signifi-

cant differences were also observed between the

performance of the model whose weights were ini-

tialized with the pre-trained parameters from the

GPT model of Radford et al. (2018) and a model

with the same architecture that was trained from

random initialization. This 14% relative improve-

ment in overall human performance confirms that

the language representations learned by the GPT

model are transferable to generating natural lan-

guage commonsense knowledge.

Effect of decoding algorithm In Table 3, we

show the effect of different generation policies on

knowledge quality. The most interesting result

is that using greedy decoding to produce knowl-

edge tuples only results in a 10% relative perfor-

mance gap compared to a human evaluation of

the ATOMIC test set, showing that the knowledge

produced by the model approaches human perfor-

mance. While producing more total candidates

does lower overall performance, quality assess-

Seed Concept Relation Generated Plausible

X holds out X’s hand to Y xAttr helpful X

X meets Y eyes xAttr intense X

X watches Y every ___ xAttr observant X

X eats red meat xEffect gets fat X

X makes crafts xEffect gets dirty X

X turns X’s phone xEffect gets a text

X pours ___ over Y’s head oEffect gets hurt X

X takes Y’s head off oEffect bleeds X

X pisses on Y’s bonfire oEffect gets burned

X spoils somebody rotten xIntent to be mean

X gives Y some pills xIntent to help X

X provides for Y’s needs xIntent to be helpful X

X explains Y’s reasons xNeed to know Y X

X fulfils X’s needs xNeed to have a plan X

X gives Y everything xNeed to buy something X

X eats pancakes xReact satisfied X

X makes ___ at work xReact proud X

X moves house xReact happy X

X gives birth to the Y oReact happy X

X gives Y’s friend ___ oReact grateful X

X goes ___ with friends oReact happy X

X gets all the supplies xWant to make a list X

X murders Y’s wife xWant to hide the body X

X starts shopping xWant to go home X

X develops Y theory oWant to thank X X

X offer Y a position oWant to accept the job X

X takes ___ out for dinner oWant to eat X

Table 5: Generations that were randomly selected

from a subset of novel generations from the ATOMIC

development set. A novel generation is a sro tuple not

found in the training set. Manual evaluation of each tu-

ple indicates whether the tuple is considered plausible

by a human annotator.

ments still hover around 55%7 for a beam size of

10. This result suggests that COMET could be ef-

fective with human evaluators in the loop to con-

firm the correctness of generated tuples.

Efficiency of learning from seed tuples Be-

cause not all domains will have large available

commonsense KBs on which to train, we explore

how varying the amount of training data avail-

able for learning affects the quality and novelty

of the knowledge that is produced. Our results in

Table 4 indicate that even with only 10% of the

available training data, the model is still able to

7This number is partially low due to the many “none" ref-
erences in the oEffect, oReact, oWant categories. In
any set of 10 candidates, “none" can only be predicted once,
which causes most candidates in the beam to be incorrect if
“none" is the appropriate answer.



produce generations that are coherent, adequate,

and novel. Using only 1% of the training data

clearly diminishes the quality of the produced gen-

erations, with significantly lower observed results

across both quality and novelty metrics. Interest-

ingly, we note that training the model without pre-

trained weights performs comparably to training

with 10% of the seed tuples, quantifying the im-

pact of using pre-trained language representations.

5 ConceptNet Experiments

The ConceptNet dataset8, provided by Li et al.

(2016), consists of tuples obtained from the Open

Mind Common Sense (OMCS) entries in Concept-

Net 5 (Speer et al., 2017). Tuples are in the stan-

dard sro form – (e.g., take a nap, Causes, have

energy). The most confident 1200 tuples were

used to create the test set, while the next 1200

tuples were used to create two development sets,

which we combine in this work. The 100k version

of the training set was used to train models, which

contains 34 relation types.

5.1 Setup

Metrics We evaluate our models that generate

ConceptNet relations using the following metrics.

First, we report the perplexity of the gold relations

in the test set (PPL). To evaluate the quality of gen-

erated knowledge, we also report the number of

generated positive examples in the test set that are

scored as correct by the pre-trained Bilinear AVG

model developed by Li et al. (2016).9 For a given

sro tuple, this model produces a probability for

whether the tuple is correct. We threshold scores

at 50% probability to identify positive predictions.

On the completion task originally proposed in Li

et al. (2016), this model achieved 92.5% accuracy

on the test set, indicating that it is a strong proxy

for automatically evaluating whether a generated

tuple is correct. Finally, we report the same nov-

elty metrics as for ATOMIC: N/T sro and N/T o.

Baselines As a baseline, we re-implement

the BiLSTM model proposed by Saito et al.

(2018) with minor modifications outlined in Ap-

pendix A.2. This model is trained to learn to en-

code knowledge in both directions: sr → o and

8https://ttic.uchicago.edu/~kgimpel/

commonsense.html
9 A pre-trained model can be found at https:

//ttic.uchicago.edu/~kgimpel/comsense_

resources/ckbc-demo.tar.gz

Model PPL Score N/T sro N/T o Human

LSTM - s - 60.83 86.25 7.83 63.86

CKBG (Saito et al., 2018) - 57.17 86.25 8.67 53.95

COMET (- pretrain) 8.05 89.25 36.17 6.00 83.49

COMET - RELTOK 4.39 95.17 56.42 2.62 92.11

COMET 4.32 95.25 59.25 3.75 91.69

Table 6: ConceptNet generation Results

or → s to help augment a knowledge base com-

pletion model. It is only evaluated on the sr → o

tuple generation task, however. For posterity, we

also include the result from a LSTM model that is

only trained on the sr → o task (LSTM - s).

Ablations We include the following ablations

of our full model. First, we evaluate how pre-

training on a large-scale corpus (Radford et al.,

2018) helps performance by training a comparison

model from scratch, denoted COMET (- pretrain)

in Table 6. Second, in our main model, we map

relation names to natural language (e.g., IsA →
“is a”; HasSubevent → “has subevent”) so the

model can learn to represent these concepts with

language, as opposed to learning a special embed-

ding from scratch for each relation (Levy et al.,

2017). As an ablation, we train a model with-

out converting relation tokens to natural language

(e.g., IsA 6→ “is a”), which we denote COMET -

RELTOK.

5.2 Results

Quality Our results indicate that high-quality

knowledge can be generated by the model: the low

perplexity scores in Table 6 indicate high model

confidence in its predictions, while the high clas-

sifier score (95.25%) indicates that the KB com-

pletion model of Li et al. (2016) scores the gener-

ated tuples as correct in most of the cases. While

adversarial generations could be responsible for

this high score, a human evaluation (following

the same design as for ATOMIC) scores 91.7% of

greedily decoded tuples as correct. Randomly se-

lected examples provided in Table 7 also point to

the quality of knowledge produced by the model.

Novelty In addition to being high quality, the

generated tuples from COMET are also novel, with

59.25% of the tuples not being present in the train-

ing set, showing that the model is capable of gen-

erating new edges between nodes, and even cre-

ating new nodes – 3.75% of o nodes are novel –

to extend the size of the knowledge graph. One

shortcoming, however, is that novel generations





6 Related Work

Knowledge base construction Previous work

has looked at constructing knowledge bases as re-

lational schemas using expert knowledge (Lenat,

1995; Bodenreider, 2004; Miller, 1995), semi-

structured text extraction (Suchanek et al., 2007;

Hoffart et al., 2013; Auer et al., 2007; Bol-

lacker et al., 2008) and unstructured text extraction

(Dong et al., 2014; Carlson et al., 2010; Nakashole

et al., 2011, 2012; Niu, 2012). In our work, we fo-

cus on construction of commonsense knowledge

bases which require the use of open-text events

rather than a well-defined relational schema struc-

ture. Other work in information extraction can

also be applied to knowledge base construction

with open-text entities (Soderland et al., 2010; Et-

zioni et al., 2011; Fader et al., 2011; Mausam et al.,

2012; Fan et al., 2010; Cui et al., 2018), but these

methods typically extract explicitly stated text re-

lations. Conversely, our approach generates new

knowledge that is often unstated in text, as com-

monsense information typically is (Gordon and

Van Durme, 2013).

Commonsense knowledge base completion

Existing work on generation of novel common-

sense knowledge has also used ConceptNet and

ATOMIC as underlying KBs. Specifically, Li et al.

(2016) proposed a set of neural network models

for scoring tuples in ConceptNet. Our work differs

from this approach as their models evaluate full tu-

ples rather than learning to generate the phrases to

make new nodes in the knowledge graph. Saito

et al. (2018) builds upon this work by proposing a

joint model for completion and generation of com-

monsense tuples. Their work, however, focuses on

using tuple generation to augment their KB com-

pletion model, rather than to increase coverage in

commonsense KB construction. Finally, Sap et al.

(2019) use LSTM encoder-decoder models to gen-

erate commonsense knowledge about social situa-

tions. We use transformers and investigate the ef-

fect of using pre-trained language representations

(Radford et al., 2018) to initialize them.

Transformers and pre-training Finally, our

work builds on previous work on adapting pre-

trained language models for various sequence la-

beling, classification, and NLI end tasks (Rad-

ford et al., 2018; Peters et al., 2018; Devlin et al.,

2018). Our research investigates how pre-trained

language models can be used for large-scale com-

monsense KB construction by generating new

graph nodes and edges between nodes.

7 Conclusion

We introduce COMmonsense Transformers

(COMET) for automatic construction of common-

sense knowledge bases. COMET is a framework

for adapting the weights of language models to

learn to produce novel and diverse common-

sense knowledge tuples. Empirical results on

two commonsense knowledge bases, ATOMIC

and ConceptNet, show that COMET frequently

produces novel commonsense knowledge that

human evaluators deem to be correct. These

positive results point to future work in extend-

ing the approach to a variety of other types of

knowledge bases, as well as investigating whether

COMET can learn to produce OpenIE-style

knowledge tuples for arbitrary knowledge seeds.
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A Additional Training Details

A.1 Training Hyperparameters

ATOMIC For ATOMIC, we use a maximum

learning rate of 6.25e-5 with a warmup period

of 100 minibatches. After, we decay the learn-

ing rate linearly until the end of training. We

train for 50k minibatches and use early stopping.

We clip gradients when their norm is greater than

1. The remainder of our hyperparameters are the

same as in Radford et al. (2018). We use the

public HuggingFace implementation of the GPT

model as a base for our experiments available

at: https://github.com/huggingface/

pytorch-openai-transformer-lm.

ConceptNet For ConceptNet, we use a maxi-

mum learning rate of 1e-5 and a warm-up period

of 200 minibatches. The learning rate is decayed

linearly until the end of training, which lasts for

100k minibatches. All other hyperparameters are

the same as for training on the ATOMIC corpus.

A.2 ConceptNet baseline

We train the ConceptNet baseline with a learning

rate of 1e-4 for 100k minibatches. Early stopping

is used with the validation loss. Similarly to Saito

et al. (2018), we use 200-dimension hidden states

and 200-dimensional word embeddings. We use a

single-layer bidirectional LSTM (Hochreiter and

Schmidhuber, 1997) to encode the first phrase and

a single-layer unidirectional LSTM to decode the

target phrase. Relation embeddings are concate-

nated with the word embeddings of the decoder

before being input to the decoder LSTM. We set

the dropout rate to 0.2 before the output projection

layer and after the word embedding layers. We

outline the following differences between our re-

implementation of the model of Saito et al. (2018)

and their original implementation and the reason

for the change.

1. We use Glove (Pennington et al., 2014) em-

beddings rather than fastText embeddings

(Bojanowski et al., 2017) to initialize word

embeddings. Because the model indicated

that 200-dimensional word embeddings were

used, we could not use the pretrained em-

beddings provided by the fastText group1.

In Saito et al. (2018), the authors de-

scribed training their fastText embeddings on

1https://fasttext.cc/

Wikipedia. With no reference to the precise

corpus used, we opted to use Glove embed-

dings to initialize the word embeddings of the

encoder and decoder instead.

2. We use the Adam optimizer with learning

rate of 0.0001, rather than SGD with a learn-

ing rate of 1.0 because after training both

models, we found that the Adam-trained

model performed better on development set

perplexity. We also do not use weight de-

cay, as this seemed to lower validation per-

formance, as well.

3. We do not train the generation model jointly

with the completion model. We only train

an individual generator. The results of Saito

et al. (2018) did not show a significant differ-

ence in generation performance between the

two on the ConceptNet dataset.

4. We train a second baseline (LSTM - s) that

does not learn to produce relations in both di-

rections (i.e., sr → o and or → s). Instead if

only learns parameters that can produce rela-

tions in the forward direction (sr → o)

5. We do not decay the learning rate because it

was unclear from the original paper what the

exact learning rate schedule was.

B Additional Evaluation Details

B.1 Human Evaluations

We used Amazon Mechanical Turk to get ratings

of model output accuracy. We selected seed con-

cepts and relations from the test set and generated

completions using each model to create (s, r, o)
tuples. For ATOMIC, we selected tuples by choos-

ing all possible relations (9) for each of 100 ran-

domly selected seed concepts (900 total (s, r)
pairs) following the procedure from Sap et al.

(2019). For ConceptNet, we used the full test set

(1200 total (s, r) pairs).

For Beam-2/5/10 and top-5/10 sampling gener-

ations, we used the model to generate 2, 5, or 10

(respectively) possible completions (o) per (s, r)
pair. Workers were shown the full set and asked

to select all of the o that are valid completions for

the (s, r) pair. Each set of tuples was rated by 5

workers.

For greedy sampling generations, we used the

model to generate one possible completion (o) per



(s, r) pair. Workers were shown the completed tu-

ple (s, r, o) and asked whether it is valid or not.

Each tuple was rated by 5 workers.

We measure accuracy as the percentage of dis-

tinct worker responses where the (s, r, o) tuple is

marked as valid (i.e., #valid
5·|(s,r,o)| ).

C Example Outputs

Additional examples can be seen in Figures 5,

6, and 7 that are produced using the demo at

https://mosaickg.apps.allenai.

org.

D Additional Training Experiments

In addition to the more naive setups for knowl-

edge graph completion, we explore various multi-

task and hierarchical learning setups on top of the

taxonomy of commonsense relations given by Sap

et al. (2019), which group together along vari-

ous axes (e.g., related to agent/theme, related to

causes/effects, etc.).

D.1 Multi-relation Training

For the ATOMIC corpus, we experiment with mul-

tiple multi-task training setups, similar to Sap et al.

(2019). First, we train an individual model for

each relation type (oReact, oEffect, etc.),

which we denote as COMET - 9LM in the Table 9.

We also experiment with various information-

sharing dataset configurations that organize differ-

ent relations across common dimensions. We out-

line these dimensions and the makeup of each split

in Table 9. For ConceptNet, all models are always

trained on all relation types jointly. Results on

automatic evaluation metrics are provided in Ta-

ble 11. Because there did not seem to be signif-

icant differences between these performances and

that of COMET - FULL, we did not run additional

experiments on these ablations.

D.2 Concept Hierarchy Training

Leveraging the prior knowledge that certain re-

lation types in the ATOMIC knowledge graph

are linked to each other, we explore provid-

ing these group identities as additional tokens

in the relation. For example, when generating

the completion of a xReact relation, the model

would receive as input the following meta-tokens:

<xReact>, <X>, <POST>, <Involuntary>

– thereby providing common context with other

relations that are part of the same groupings (e.g.,

generating a phrase for a xWant relation would

receive the <X> and <POST> tokens as input,

but not <Involuntary>). Depending on the

relation for a particular training example (e.g.,

xReact), a set of meta-tokens are appended to

the relation tokens, Xr, that provide hierarchi-

cal relational information, allowing the model to

share information across relation types. We pro-

vide a more in-depth description of the category

hierarchy training combinations in Table 10. Re-

sults on human evaluation metrics are provided in

Table 12. Because the model with the hierarchi-

cal meta-tokens performed worse than the regular

COMET, we did not run additional experiments on

this ablations.









Event Description Example Completion:

Person X puts Person X’s trust in Person Y

oEffect The effect the event has on others be-
sides Person X

is considered trustworthy
is believed
gains Person X’s loyalty

oReact The reaction of others besides Person
X to the event

trusted
honored
trustworthy

oWant What others besides Person X may
want to do after the event

work with Person X
partner with Person X
to help Person X

xAttr How Person X might be described
given their part in the event

faithful
hopeful
trusting

xEffect The effect that the event would have
on Person X

gets relieved
stays faithful
Is betrayed

xIntent The reason why X would cause the
event

to be trusting
his or her help/guidance/advice
to be friends

xNeed What Person X might need to do be-
fore the event

to be friends with Person Y
to have heard a lot of good things about Per-
son Y
to get to know Person Y

xReact The reaction that Person X would
have to the event

trusting
safe, not alone
understood

xWant What Person X may want to do after
the event

to rely on Person Y
to go into business with Person Y
to make sure that their heart feeling is right

Table 8: Definitions of the relations in ATOMIC. Events in ATOMIC center around the personal situations of a

central figure, Person X, with potentially more participants.

Organization Description Relations

PERSON

X/Y
The training set is split into relations
for the subjects of the event (Person X)
and relations for other participants in
the event

T1 = {xAttr, xEffect, xIntent,
xNeed, xReact, xWant}
T2 = {oEffect, oReact, oWant}

PRE/POST Event preconditions are jointly trained
(i.e., intentions, needs). Event postcon-
ditions are jointly trained.

T1 = {xIntent, xNeed}
T2 = {oEffect, oReact, oWant,
xEffect, xReact, xWant}

(IN)VOLUN Involuntary relations are trained jointly,
such as reactions and effects. Volun-
tary relations are trained jointly, such as
needs, wants, and intents.

T1 = {oWant, xIntent, xNeed, xWant}
T2 = {oEffect, oReact, xAttr,
xEffect, xReact}

FULL The training set is made up of all rela-
tions and the model is trained jointly on
all of them

T1 = {oEffect, oReact, oWant, xAttr,
xEffect, xIntent, xNeed, xReact,

xWant}

Table 9: Multi-relation training setups. Following Sap et al. (2019), the xAttr relation is not included in the

PRE/POST training configuration



Meta-Token Description Relations

<X> Appended to relations that describe an
attribute of Person X

xAttr, xEffect, xIntent, xNeed,

xReact, xWant

<Y> Appended to relations that describes an
attribute of a participant that is not Per-
son X

oEffect, oReact, oWant

<Pre> Appended to relations that correspond
to pre-conditions of the event

xIntent, xNeed

<Post> Appended to relations that correspond
to post-conditions of the event

oEffect, oReact, oWant,

xEffect, xReact, xWant

<Voluntary> Appended to relations that correspond
to voluntary dimensions of the situation

oWant, xIntent, xNeed, xWant

<Involuntary> Appended to relations that correspond
to involuntary dimensions of the situa-
tion

oEffect, oReact, xAttr,

xEffect, xReact

Table 10: Category hierarchy meta-tokens, along with the description and the relations to which they are appended

Model PPL3 BLEU-2 N/T sro4 N/T o N/U o

COMET- 9LM 11.72 14.89 100.00 9.45 49.89

COMET- (IN)VOLUN 11.38 14.99 100.00 8.60 48.36

COMET- PERSONX/Y 11.30 15.21 100.00 9.12 49.59

COMET- PRE/POST 11.35 14.88 100.00 9.86 51.86

COMET- FULL (- pretrain) 15.42 13.88 100.00 7.25 45.71

COMET- FULL 11.14 15.10 100.00 9.71 51.20

COMET- FULL (+ hierarchy meta-tokens) 10.98 15.27 100.00 10.03 51.97

Table 11: Automatic evaluations of quality and novelty for generations of ATOMIC commonsense that are trained

with the training set split along different relation types. The training splits are outlined in Table 9.

Model oEffect oReact oWant xAttr xEffect xIntent xNeed xReact xWant Total

COMET 29.02 37.68 44.48 57.48 55.50 68.32 64.24 76.18 75.16 56.45

COMET (+ hierarchy meta-tokens) 28.46 38.96 43.64 51.90 50.84 63.00 63.98 66.20 75.82 53.64

Table 12: Human score of generations of ATOMIC commonsense for the regular COMET model and the COMET +

category meta tokens


